+18888889999
诚信为本:市场永远在变,诚信永远不变。

并行算法:如何利用并行处理提高算法的执行效率?

你的位置: 首页 > 耀世资讯

并行算法:如何利用并行处理提高算法的执行效率?

2024-03-12 12:06:49

是衡量算法执行效率的一种标准。但是,时间复杂度并不能跟性能划等号。在真实的软件开发中,即便在不降低时间复杂度的情况下,也可以通过一些优化手段,提升代码的执行效率。毕竟,对于实际的软件开发来说,即便是像 10%、20% 这样微小的性能提升,也是非常可观的。

。那当算法无法再继续优化的情况下,我们该如何来进一步提高执行效率呢?我们今天就讲一种非常简单但又非常好用的优化方法,那就是并行计算。今天,我就通过几个例子,给你展示一下,如何借助并行计算的处理思想对算法进行改造?

假设我们要给大小为 8GB 的数据进行排序,并且,我们机器的内存可以一次性容纳这么多数据。对于排序来说,最常用的就是时间复杂度为 的三种排序算法,归并排序、快速排序、堆排序。从理论上讲,这个排序问题,已经很难再从算法层面优化了。而利用并行的处理思想,我们可以很轻松地将这个给 8GB 数据排序问题的执行效率提高很多倍。具体的实现思路有下面两种。

。我们可以将这 8GB 的数据划分成 16 个小的数据集合,每个集合包含 500MB 的数据。我们用 16 个线程,并行地对这 16 个 500MB 的数据集合进行排序。这 16 个小集合分别排序完成之后,我们再将这 16 个有序集合合并。

。我们通过扫描一遍数据,找到数据所处的范围区间。我们把这个区间从小到大划分成 16 个小区间。我们将 8GB 的数据划分到对应的区间中。针对这 16 个小区间的数据,我们启动 16 个线程,并行地进行排序。等到 16 个线程都执行结束之后,得到的数据就是有序数据了。

对比这两种处理思路,它们利用的都是分治的思想,对数据进行分片,然后并行处理。它们的区别在于,第一种处理思路是。第二种处理思路是,。这个跟归并和快排的区别如出一辙。

这里我还要多说几句,。因为 1TB 的数据肯定是存在硬盘中,无法一次性读取到内存中,这样在排序的过程中,就会有频繁地磁盘数据的读取和写入。如何减少磁盘的 IO 操作,减少磁盘数据读取和写入的总量,就变成了优化的重点。不过这个不是我们这节要讨论的重点,你可以自己思考下

我们知道,。

如果我们是给动态数据构建索引,在数据不断加入的时候,散列表的装载因子就会越来越大。为了保证散列表性能不下降,我们就需要对散列表进行动态扩容。对如此大的散列表进行动态扩容,一方面比较耗时,另一方面比较消耗内存。比如,我们给一个 2GB 大小的散列表进行扩容,扩展到原来的 1.5 倍,也就是 3GB 大小。这个时候,实际存储在散列表中的数据只有不到 2GB,所以内存的利用率只有 60%,有 1GB 的内存是空闲的。

实际上,我们可以将数据随机分割成 k 份(比如 16 份),每份中的数据只有原来的 1/k,然后我们针对这 k 个小数据集合分别构建散列表。这样,散列表的维护成本就变低了。当某个小散列表的装载因子过大的时候,

还是刚才那个例子,假设现在有 2GB 的数据,我们放到 16 个散列表中,每个散列表中的数据大约是 150MB。当某个散列表需要扩容的时候,我们只需要额外增加 150*0.5=75MB 的内存(假设还是扩容到原来的 1.5 倍)。。

当我们要查找某个数据的时候,我们只需要通过 16 个线程,并行地在这 16 个散列表中查找数据。这样的查找性能,比起一个大散列表的做法,也并不会下降,反倒有可能提高。

当往散列表中添加数据的时候,我们可以选择将这个新数据放入装载因子最小的那个散列表中,这样也有助于减少散列冲突。

我们前面学过,在文本中查找某个关键词这样一个功能,可以通过字符串匹配算法来实现。我们之前学过的字符串匹配算法有 KMP、BM、RK、BF 等。当在一个不是很长的文本中查找关键词的时候,这些字符串匹配算法中的任何一个,都可以表现得非常高效。但是,如果我们处理的是超级大的文本,那处理的时间可能就会变得很长,那有没有办法加快匹配速度呢?

我们可以把大的文本,分割成 k 个小文本。假设 k 是 16,我们就启动 16 个线程,并行地在这 16 个小文本中查找关键词,这样整个查找的性能就提高了 16 倍。16 倍效率的提升,从理论的角度来说并不多。但是,对于真实的软件开发来说,这显然是一个非常可观的优化。

不过,这里还有一个细节要处理,那就是原本包含在大文本中的关键词,被一分为二,分割到两个小文本中,这就会导致尽管大文本中包含这个关键词,但在这 16 个小文本中查找不到它。实际上,这个问题也不难解决,我们只需要针对这种特殊情况,做一些特殊处理就可以了。

我们假设关键词的长度是 m。我们在每个小文本的结尾和开始各取 m 个字符串。前一个小文本的末尾 m 个字符和后一个小文本的开头 m 个字符,组成一个长度是 2m 的字符串。我们再拿关键词,在这个长度为 2m 的字符串中再重新查找一遍,就可以补上刚才的漏洞了。

前面我们学习过好几种搜索算法,它们分别是广度优先搜索、深度优先搜索、Dijkstra 最短路径算法、A* 启发式搜索算法。对于广度优先搜索算法,我们也可以将其改造成并行算法。

。基于当前这一层顶点,我们可以启动多个线程,并行地搜索下一层的顶点。在代码实现方面,原来广度优先搜索的代码实现,是通过一个队列来记录已经遍历到但还没有扩展的顶点。现在,经过改造之后的并行广度优先搜索算法,我们需要利用两个队列来完成扩展顶点的工作。

假设这两个队列分别是队列 A 和队列 B。多线程并行处理队列 A 中的顶点,并将扩展得到的顶点存储在队列 B 中。等队列 A 中的顶点都扩展完成之后,队列 A 被清空,我们再并行地扩展队列 B 中的顶点,并将扩展出来的顶点存储在队列 A。这样两个队列循环使用,就可以实现并行广度优先搜索算法。

当要处理的数据规模达到一定程度之后,我们无法通过继续优化算法,来提高执行效率 的时候,我们就需要在实现的思路上做文章,利。所以,在很多超大规模数据处理中,并行处理的思想,应用非常广泛,比如 MapReduce 实际上就是一种并行计算框架

假设我们有 n 个任务,为了提高执行的效率,我们希望能并行执行任务,但是各个任务之间又有一定的依赖关系,如何根据依赖关系找出可以并行执行的任务?

参考spark dag

51 | 并行算法:如何利用并行处理提高算法的执行效率?

地址:海南省海口市玉沙路58号  电话:0898-66889888  手机:18888889999
Copyright © 2012-2018 首页-耀世娱乐-耀世注册站 ICP备案编:琼ICP备88889999号 

平台注册入口